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In this paper, S (stochastic)-eigenvalue concept and its S-eigenvector for linear continuous-  

time systems with probabilist ic uncertainties is proposed. The proposed concept is concerned 

with the perturbation of eigenvalues due to the probabilist ic variable parameters in the dynamic 

model of  a plant. S-eigenstructure assignment scheme via the Sylvester equation approach based 

on the S-eigenvalue concept is also proposed. The proposed design schemes are illustrated by 

numerical examples, and applied to the longitudinal dynamics of  open- loop-uns table  aircraft 

with possible uncertainties in aerodynamic and thrust effects as well as separate dynamic 

pressure. These results explicitly characterize how S-eigenvalues in the complex plane may 

impose stability on S-eigenstructure assignment. 
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1. Introduction 

In recent years, eigenstructure assignment has 

been applied to the design of various kinds of 

practical multivariable control systems, e.g., heli- 

copters, aircraft, missiles, generator, voltage regu- 

lators and mechanical systems' (Liu and Patton, 

1998). The specified effect of eigenstructure as- 

signment is achieved by assigning a certain set of  

eigenvalues and an associated set of eigenvectors 

to the c losed- loop system. In general, the speed of 

response is determined by the assigned eigen- 

values whereas the shape of the response is fur- 

nished by the assigned eigenvectors (Fahmy and 

Tantaway, 1984). Eigenstructure assignment is 
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well-suited for incorporating the classical speci- 

fications on damping, settling time, and mode 

or disturbance decoupling into a modern multi- 

variable control framework (Sobel and Laliman, 

1989), and has been shown to be a useful tool for 

flight control design (Sobel et al., 1994). The 

eigenstructure assignment technique is used to 

design flight control laws for aircraft with many 

control efforts, and the technique together with 

suitable feedforward design can achieve static 

decoupling with internal stability, which is an 

important requirement in many flight control 

system (Lin, 1994; Sobel and Shapiro, 1985a; 

Sobel and Shapiro, 1985b). 

In direct eigenstructure assignment techniques, 
the design parameters are the desired closed- 

loop eigenvalues and specified elements of the 

c losed- loop eigenvectors. Once the design para- 

meters are specified, the feedback control gains 

are uniquely determined. Therefore, given a set 

of specifications, the feedback control gains will 

provide the desired c losed- loop transient res- 
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ponse (or come as close to it as possible within 

the system constraints),  but they might result in 

a system with poor stability robustness (Garg, 

1991), i.e., a small change in the plant dynamics 

may cause the c losed- loop system to go unstable. 

The designer is then faced with the dilemma of 

how to change the design specifications such that 

the resulting feedback system will also provide 

adequate stability robustness. Note that, in gener- 

al, the designer does have a certain amount of  

freedom in choosing the design specifications. 

The designer rarely wants an exact value for a 

c losed- loop eigenvalue or exact shape for a cor- 

responding eigenvector. The specifications are 

rather in terms of desired regions for the closed- 

loop eigenvalues and acceptable sets of  eigen- 

vector shapes. The general eigenstructure assign- 

ment methodologies cannot guarantee stability 

robustness to parameter variations of a system. 

This problem is still unsolved, thus it is wor- 

thwhile to explore the extension of the conven- 

tional robust right eigenstructure assignment 

technique to the right and left eigenstructure as- 

signment schemes. 

The class of parameter perturbations which do 

not lend themselves to exact modeling is an im- 

portant consideration in the design of control 

systems. These perturbations may be caused by 

aging of components, changes in environmental 

conditions, calibration errors, or by using an 

inexact but simpler model in design. To maintain 

at least stability of the overall system is desirable 

under such conditions. The two most popular  

approaches to deal with this problem are the 

robust control (Dorato, 1987) and random-para-  

meter control techniques (Mohler and Kolodziej,  

1980). Robust control uses a characterization 

of  deterministic but unknown perturbations in 

terms of  upper bounds on their allowable values. 
The degree of tolerance of  a control system design 

to bounded but unknown perturbations has at- 

tracted the attention of many researchers, basic- 

ally two approaches to the problem have emerg- 
ed :  frequency domain techniques which use the 

singular value decomposition and time domain 
techniques which use Lyapunov stability criteria 
(Anderson and Moore, 1971 ; Lethomaki et al., 

1981; Patel et al, 1977; Safonov and Athans, 

1977; Yedavalli  et. al., 1985; Zhou and Khar- 

gonekar, 1987). Most of these works are con- 

cerned with the robustness of systems controlled 

by the infinite horizon linear quadratic regula- 

tor (Choi and Seo, 1999; Seo and Choi, 2003). 

An alternative way of treating the parameter 

perturbations is to use multiplicative noises or 

probabilist ic parameters in the model which 

worked well in several cases such as modeling 

human operators in a control task (Levioson 

et al., 1968), control of macroeconomic models 

(Aoki,  1984), and modeling rounding errors of a 

digital computer used in control loop (Wingerden 

and Dekoning, 1984). Control  system robustness 

is defined as the ability to maintain satisfactory 

stability or performance characteristics in the pre- 

sence of all conceivable system parameter varia- 

tions. While assured robustness may be viewed 

as an alternative to gain adaptat ion or scheduling 

to accommodate known parameter variations, 

more often it is seen as protection against uncer- 

tainties in plant specification. Consequently, a 

statistical description of  control system robustness 

is consistent with what may be known about the 

structure and parameters of  the plant 's dynamic 

model (Stengel et al., 1991). 

With the help of computers, s ingular-value 

analysis has extended the frequency-domain ap- 

proach to mult i input/mult ioutput  systems (Let- 

homaki et at., 1981; Sandell, 1979) ; however, 

guaranteed s tabi l i ty-bound estimates often are 

unduly conservative, and the relationship to para- 

meter variations in the physical system is weak. 

Structured singular-value analysis (Doyle, 1982) 

reduces this conservatism somewhat, and alter- 

nate treatments of structured parameter variations 

have been proposed (Horowitz, 1982 ; Tahk and 

Speyer, 1987; Yedavalli  and Liang, 1986), al- 

though these approaches remain deterministic. 

Reference (Yaz, 1988) uses the term "stochastic 

robustness" to describe a stability bound based on 

Lyapunov methods and parameter perturbations 
that are modeled as probabilist ic sequences. This 

is a deterministic stability bound expressed in 
terms of the norm of a vector of noise variances. 
The notation of "probabil i ty of  instability" was 
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introduced in (Stengel, 1980) with application to 

the robustness of  the Space Shuttle's flight control 

system. This method determines by the probabil-  

ity distributions of  c losed- loop eigenvalues, given 

the statistics of  the variable parameters in the 

dynamic model of  plant (Ray, 1992 ; Stengel and 

Ray, 1991). The probabil i ty that all these eigen- 

values lie in the open left-half s plane is the scalar 

measure of  robustness. However, this takes no 

account of the effect of probabilist ic information 

on parameter uncertainty. It is merely the deter- 

ministic evaluation of by Monte Carlo simula- 

tion. Thus, further study is required on the 

methods that deal with the effect of probabilistic 

information on parameter uncertainty stochas- 

tically. 
In this paper, first, a novel eigenvalue and 

its corresponding eigenvector concept for linear 

systems with probabilist ic uncertainties is also 

proposed. The proposed concept is concerned 

with the perturbation of eigenvalues due to the 

pl:obabilistic variable parameters in the plant's 

dynamic model. The probabil i ty that all eigen- 

values lie in the open left-half s plane is the sca- 

lar measure of robustness. Second, the stability 

based on the proposed concept is presented on 

the appropriate random characteristics of per- 

turbations to maintain the proper stability beha- 

vior of  the overall system. Third, S-eigenstruc- 

ture assignment scheme via a Sylvester equation 

approach based on the S-eigenvalue concept is 

proposed. The proposed design schemes are 

illustrated by numerical examples, and applied to 

the longitudinal dynamics of open- loop-uns table  

aircraft with possible uncertainties in aero- 

dynamic and thrust effects as well as separate 

dynamic pressure. These results explicitly charac- 

terize how S-eigenvalues in the complex plane 

may impose stability on S-eigenstructure assign- 

ment. 

2. S-Eigenvalue/Eigenvector 

By Mn(F)  we denote the n - b y - n  matrices 

over a field F,  usually the real numbers R or 

the complex numbers C. Also the set (vector 
space) of  all real-entried (respectively complex- 

entried) n vectors is denoted by R n (respectively 

C n, both interpreted as column vectors (Horn and 

Johnson, 1985). All  matrices are with compatible 

dimensions if they are not explicitly stated. 

Consider the linear t ime-invariant  system with 

probabil ist ic parameters as follows : 

~ x = F ( p ) x + G ( p )  u (1) 

u = u c - K ( p )  x (2) 

where ~x represents :~ (t)  for continuous systems 

and x ( t +  1) for discrete systems, x ~ R  n the state 

vector, u ~ R  m the control input vector. The 
matrices F ( p ) E R  n×n and G ( p ) ~ R  n×m are sys- 

tem and input matrices that may be Gaussian 

random parameter, 12. uc is a command input 

vector, and, for simplicity, the ( re×n)  control 

gain matrix, K ( p ) ,  is assumed to be known. A 

linear state-feedback control law (2) is applied 

to the continuous system (1), then the closed- 

loop system representation is given by 

fc (t) = (F (p )  - G (P) K ( p )  ) x (t) 
(3) 

~ A  (p) x (t) 

where, the n eigenvalues, p~(p), of the matrix 

I F  (p) - G (p) K ( p )  ] determine c losed- loop sta- 

bility and can be determined as the roots of  the 

determinant equation 

de t ( s ln - - [F(p )  - G ( p ) K ( p )  ])=O (4) 

The n eigenvalues of  the c losed- loop system can 

be represented as the mean of eigenvalues plus the 

perturbation terms, respectively. 

p;(p) = p ~ + p ; ( p ) ,  i = l ,  .-., n (5) 

where, p~ = E  (pi (P)) and tSi (p) denote the mean 
of i - th  eigenvalue and the variation from the 

mean of i - th  eigenvalue, respectively. The pe- 

rturbation term in Eq. (5) reflect the eigenvalues 

variation due to the probabilist ic parameter vari- 

ation of the system matrix. Because root loci 

for individual parameter variations would follow 

classical configurations of root locus construc- 

tion, with the heaviest density of roots in the 
vicinities of the nominal roots, the probabilistic 

distribution of eigenvalues may be assumed to be 

the Gaussian distribution. The basic justification 
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of this statement is embodied in the central limit 

theorem : one of its numerous precise statements 

(differing in specific assumptions and details, but 

all essentially the same) is now stated• 

T h e o r e m  1. C e n t r a l  L i m i t  T h e o r e m  (Maybeck, 

1979) 

Let {p~(p)  l i = l ,  "", n} be a set of  eigen- 

values that are calculated from the production 

set, { A 4(p) }~=1, of  a linear t ime-invariant  sys- 

tem with probabilist ic parameter variations on 

a large scale. Also, let each element of  { tS~ (p) = 

P~ (P) - -P~ }~=1 be a n-vector  which are identic- 

ally distributed with means and covariance ma- 

trices m k and p4,  respectively. Define the random 

vector y~v as their sum : 

N 

and also define tSi(P) as the (zero-mean) nor- 

malized sum random var iable :  

tL-(P) = [ P y , j  -,,2 [ y ~ _  E Eye] ] 

where 

N N 

E [ys]  = 5-7. m 4, P,,,~ = N pK, 
k = l  • k = l  

and p - u z =  (pu2) -1 

where p m  is defined as the n-by-n  matrix such 

that p m ( p u z )  r. Then, in the limit as N--- '  co, 

tSi(p) becomes a zero-mean Gaussian random n -  

vector with a covariance matrix equal to identity 

matrix : 

limf~,,p,(~) =[(2a ' )mZ]exp { l ~ . r ~ }  

The proof  is going to show that ¢3;(p) converges 

in distribution to a random variable having a 

standard normal distribution by showing that the 

moment generating function of  ¢3i(p) converges 

to the moment generating function of  the stan- 

dard normal distribution. The theorem states that 

if the eigenvalues are generated as the sum of 

eigenvalues of many identical system, the proba-  

bilistic distribution ofeigenvalues (5) approaches 

a Gaussian distribution as more eigenvalues are 
summed. The eigenvalue-eigenvector equation of 

the c losed- loop system (3) with Gaussian distri- 

bution eigenvalues can be defined as follows : 

D e f i n i t i o n  1. Let A ( p ) ~ M , ,  and ~ ( P ) ~ C " .  

Consider 

A (p) ¢(p)  = 0 ( P )  ¢ (P) ,  ¢(P) :~0 (6) 

where p(p) is a scalar. If a scalar p(p) and a 

nonzero vector ff (p) happen to satisfy this equa- 

tion, then p(p) is called an "S-eigenvalue" of 

A ( p )  and ~b(p) is called an "S-eigenvector" of 

A (p) associated with p (p). Notice the two occur 

inextricably as a pair, and that an S-eigenvector 

cannot be the zero vector. 

Suppose that n-eigenvalues can be plotted [ 

times for time interval [to, tf] on the complex 

plane, then n × l-eigenvalues may be plotted on 

the complex plane. If all of  n ×  l-eigenvalues 

lie in the left-half  s plane, then the stability of  

c losed- loop system is guaranteed. But, if some 

eigenvalues lie in the r ight-half  s plane, then 

closed- loop system has the probabil i ty of insta- 

bility. Thus, the probabil i ty that all of these 

eigenvalues lie in the left-half  s plane is the sca- 

lar measure of  robustness-stability. The density 

of  these eigenvalues depicts the l ikelihood that 

eigenvalues vary from their mean values, this can 

be gained by plotting the probabil i ty density 

function corresponding eigenvalue on a three- 

dimensional complex plane. From Theorem 1, 

the probabil i ty density function of  S-eigenvalue 

is assumed to be the Gaussian distribution as 

follows : 

D e f i n i t i o n  2. Let A ( p ) ~ M n  be a c losed- loop 

system. For  A(p), the probabil i ty density func- 

tion corresponding to the S-eigenvalue in a com- 

plex plane C is defined by : 

• Case 1 : Complex conjugate eigenvalue 

pr(p(p)) 

_ l [ - I (P(p ) -U)r~-~(P( ' ) -PE)  ] ( 7 )  2a'] ~ ] 1t2 exp _ 

2xl 52, I *'a exp 

• Case 2 : Real eigenvalue 

prI~(p/l = ~ e × p  (~(P/ -E[~(P/ ] /~  (81 
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with pr(p)=[~(p) &(p) ] r  and ~=d iag ( r~} ,  

o'~), where Y]. is a positive (nX n) matrix, I'] 
denotes the determinant of a matrix, and exp ~-] 
denotes exponential. The quantities 

I- ~(p) 
P~= E[ P(p) ] = E[ co(p) ] 

and 

5-].=E [ ( P ([) _ pE) ( p (p) _ pE) r] 

are the mean and covariance of the vector P(p), 
respectively. 

Figure 1 shows the probabilistic distribution 
of  the i- th S-eigenvalue. The variation of i-th 
eigenvalue per time (Fig. 1 (a)) can be repre- 
sented to the concept as the probability density 
function on a three-dimensional complex plane in 
either case (real eigenvalue (Fig. l (b)) ,  complex 
conjugate eigenvalue (Fig. 1 (c)), respectively. 

Next, define the spectrum corresponding to S- 
eigenvalue as following: 

Definit ion 3. The set of all p ( P ) ~ C  that are 
S-eigenvalues of A(p)~Mn is called the "S- 
spectrum (stochastic-spectrum)" of A(p)  and is 
denoted by a(A(p)) .  The spectral radius of 
A(p )  is the non-negative real number p(A)= 
m a x { I p ( t ) l : p ( P ) ~ a ( A ( p ) ) } .  This is the 
radius of the smallest disc centered at the origin 
in the complex plane that includes all the S- 
eigenvalues of A (p). 

P'fP) t 

IT T " " r  T T ' time 
0 ' 2 1 l ~'S 

(a) The variance of /-th eigenvalue per time 

PDF PDF 
. . k  

° J  I ~ , . . ~  . : O" 

(b) Real eigenvalue (c) Complex conjugate eigenvalue 
Fig. I The probabilistic distribution of the S-eigen- 

value 

And, the S-eigenvector corresponding to S- 
eigenvalue can be stated as following theorem : 

Theorem 2. Let A(p)~M,.  For a given p(p) 
(A(p)), the set of all S-eigenvectors ¢ i ( P ) E C  n 
satisfying A;(p )¢~(p )=p~(P)¢ i (P )  is called the 
"S-eigenspace (stochastic-eigenspace)" of A (p) 
corresponding to the S-eigenvalues. 

¢~ (P) = / ' ,  (P) ¢5 (9) 

where Z~(P) ={ I+ (p~(p) I-A(p))-I( ,~(p) _ 
~ ( P ) I ) } ,  ¢ ~ = ¢ ~ ( P ) - ¢ ~ ( P ) ,  ¢ 5 = E [ ¢ ~ ( P ) ] ,  
and VAR[¢ i (p )  ] = ¢ 5 ( ¢ ~ )  r. 

Proof:  Substitute Ri(P)=P~ +/7i(P), ¢i(P)= 
¢5+¢~(P) ,  and A(p)=Ae+A(p)  for Eq. (6), 

( p S I +  f , (P)  I - A E - A  (P)) ( ¢ 5 + ¢ ; ( P ) )  = 0  

and 

(p~ I -A  ~) ¢5 + (fi (P) I - A  (p) ) ¢5 
+ (pSI+~, (p) I -A~-A(p) )  ¢,(P) = 0  

From the characteristics of deterministic eigen- 

value problem, (pEiI-A~)¢~=O. The above 
equation is classified in terms of ¢i(P) as 
follows : 

¢, (p) = (p, (p) I - A  (p)) - '  (A (p) - t~; (P) I) ¢5 

Because of  ~bi(p)=¢/E+~i(ib), substitute { I +  
(p , (p)I -A(p))- l (A(p)-~, (p)I )}  for Zi(P), 
then Eq. (9) can be obtained. Also, In such a 
case, the mean and covariance of S-eigenveetor 
can be easily shown as follows: 

E [ ¢ i ( P ) ]  = e l  

VAR [¢~(p)]=E[¢~(p)cr(p)] 
=E[7~(P)  Cf (7~(P) e l )  r] 

= ¢5 (¢5) ~ 

The S-eigenvector to the mean eigenvector may 
be represented as the following absolute misali- 
gnment angle. 

t/II ¢,(p) II II ¢g 
&(p) (10) 

where, Oi(P) is a linear operator (Jonh, 1999) 
and geometrically identical with ~'i(P) of Eq. (9). 
Theorem states that S-eigenvector rotating about 
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Fig. 2 

~,(P) 

A geometric illustration of S-eigenvector on 

three-dimensional eigenspace 

ptotically stable if, and only if, deterministic 

eigenvalues are in the LHP of C. If all of 

eigenvalues lie in the left-half s plane, then the 

LHP stability of closed-loop system is guaran- 

teed. But, the S-eigenvalue with the probabilis- 

tic distribution does not guaranteed the deter- 

ministic LHP stability criterion directly, because 

S-eigenvalues vary with the probabilistic uncer- 

tainty. First, in order to deal with probabilistic 

stability, define S-mean (stochastic-mean) of the 

S-eigenvalues as follows: 

'1 
0.5 

"0.513 
Fig. 3 

Off I 04 

Eigenvector distribution corresponding to re- 
al eigenvalue of second order system 

a fixed, arbitrary nominal eigenvector. The rota- 

ting vector in three-dimensional space sweeps out 

the surface of a cone centered on the axis rotation 

geometrically as depicts Fig. 2. For example, if 

the identity matrix is chosen for the nominal 

eigenvector in two-dimensional space, the eigen- 

vector has a sector distribution in Fig. 3. 

The modal matrix of S-eigenvector can be 

defined as follows: 

Definition 4. A matrix O ( p ) E C  n×n is called a 

"S-modal (stochastic-modal) matrix" of A(p)  

Mn corresponding to p(p) ~ a ( A ( p )  ) if: 

• (p) = F ( p )  ~E 

where 

r ( p ) = E r , ( p )  r~(P) - r,(P) . .  rn(P)]  

r, (P) = { I +  (p, (p) I - A  (p) - '  ( A  (p) - ~ ,  (p) I)} 

and 

3. S-Stability 

It is well known that an LTI system is asym- 

Definition 5. Let a(p) be a real variable of 

S-eigenvalues on the complex plane C. The 

"S-mean (stochastic-mean)", sm(a (p ) ) ,  over C 

is defined by:  

1 t*to+T 
s m ( a ( p ) ) = f i ~ - J , o  a (p )dp  ( i l )  

where o" (p) = a e + 8 (p), a E = E [ a (p) ], and stoc- 

hastic integrals of 8(P) existed. 

Definition 5 is defined to use that the real 

value of the eigenvalue determines the stability 

of the plant. The density of these eigenvalues 

depicts the likelihood that eigenvalues vary from 

their mean values, these means have only to exist 

on the left-half plane at least. Next, the probabil- 

ity of stability of the S-eigenvalue is defined as 

follows : 

Definition 6. Let p r (p(p) )  be a given PDF 

corresponding to an S-eigenvalue in a complex 

plane C. If p r (p(p) )  be a stochastic integrable 

function on the LHP (--0% 0], then the "prob- 

ability of stability" of LTI stochastic systems is 

defined by : 

s =  f [ p r ( p ( p )  ) dp (12) 

where 0 < : S ~ I .  Notice that the probability of 

stability in the ergodic sense is given by : 

S = l i m  .l~,N(a(P) ~0) 
J-o* J n J = l  

(13) 

where N ( ' )  is the number of cases for which all 

elements of (-) are less than or equal to zero, n 



Eigenstructure Assignment for Linear Systems with Probabilistic Uncertainties 939 

is the dimension of the system, and ] is the 

number of Monte Carlo evaluation. 
Using definitions 5 and 6, the S-stabil i ty cri- 

terion based on the S-eigenvalue can be stated by 

the following theorem. 

Theorem 2 Let p(p) be an S-eigenvalue of 

A(p) .  Then the solution to det(pi(p)I-- 
A(p))- -O is stochastically stable for all t if 

and only if:  

i) there exists 0 < t 7 ( < c ~  such that 

sm (cr,(p)) = - -  o'~,. < 0  

and moreover, 

ii) there exists 6 > 0  such that 

P { I  l - S  I>~}- ,o 

as J - - - ,oo  for Vt,  t>To. 

Proof:  Condit ion i) states that the mean of the 

real value of  eigenvalue is less than arbitrary 

negative value --crY. Thus, the core axis of the 

Gaussian distribution is located on the left-half  

plane at least. But, though condition i) is guar- 

anteed by itself, the probabil i ty of  instability 

remains still. In order to guarantee the stochas- 

tic stable, the probabil i ty of the instability ap- 

proaches a zero in the process of  repeating the 

simulations as depict in condition ii). 

Theorem 3 The sequence of  random variables 

{ X ,  (5)} converges in probabil i ty (Leon-Garcia ,  

1994) to the random variables { X(5)}  if, for any 

e > 0 :  

P [ X , ( 5 )  - X ( 5 )  > e ]  --, 0 as n ~ c~ 

Example 1. Considered a linearized second-order 

continuous controllable system : 

[ 0 
(t) = --25o),  --o)~ 0.5 

Suppose that the damping ratio (5) and natural 

frequency (o),) are nominally 0.707 and 1, re- 

spectively, and that each may be a Gaussian-  

distributed random variable with standard devia- 

tion of 0.2. Both 5 and co uncertain and un- 
correlated (i.e., P = E ~  con] r) ,  and It cause the 

2 

15 

1 

05  

• ~ o 

" -  -0 S 

-1 

-1 5 • 

-.~!~ 

Fig. 4 

. . . .  : . . . . . . . . .  i i . . . . . .  " = i  . . . . . . .  ! . . . .  :: 
i i I 5 t i i i 

-3 -215 -2 -1 -I -g.5 O 135 
te l l [  

Open-loop eigenvalue distribution of Exam- 
ple 1 on two-dimensional complex plane 

open- loop system to unstable stochastically. The 

given system have two eigenvalues per time, these 

eigenvalues are represented to the combination 

of  Gasussian distribution by the interrelation 5 

and c0,. The mean of the open- loop  eigenvalues 

can be obtained by the final time t i=5000 as 
follows : 

p1=- -0 .707+0.7072i  

p2=--0 .707--0 .7072i  

The probabil i ty of stability is S=0.96 .  The mean 

of the open- loop  eigenvalue are located on the 

left-half  plane. Also, Pc~ approaches to the zero 

in the process of  repeating the simulation. Thus, 

the given system is stochastically stable in the 

sense of theorem 3. The open- loop  eigenvalue 

distribution of Example 1 on two-dimensional  

complex plane is shown in Fig. 4. 

4. S tochast ic -Eigenstrueture  
Ass ignment  

The specified effect of eigenstructure assign- 

ment is achieved by assigning a certain set of  

eigenvalues and an associated set of eigenvectors 

to the c losed- loop system. First, from the previ- 

ous definitions, the required S-eigenvalues could 
be established as follows: 

,of(p) = (p f )  d + # f ( b )  
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where E[pf(p)]=(pf)  e, E [ ( o f ( p ) - ( p f )  ~) 
(pff(p) _ (pf)e) r] = (a/a) 2. And, if the mean of 

the required modal matrix, (~e )e ,  is determined, 

the required S-modal  matrix corresponding to the 

required S-eivenvalues could be established as 

follows : 

~ (b) = F  ~ (P) (~E) ~ 

where 

F~(P)=[r~(P)  rg()P . r~(P) ... f i (P)]  

~'/(p) ={ I + (Pie (P) I -  F (p)) - '  ( F  (p) - ~5~ (p) I)  } 

Our objective is to find the feedback-gain matrix 

K(p) such that the c losed- loop S-eigenvalues 

are obtained exactly, and that the required S-  

eigenvectors are assigned to the best possible set 

of eigenvectors with consistency of statistical fit- 

ting procedures. 

Theorem 4. For  a given set of F(p), G(p) 
matrices, which are LTI stochastic systems with 

inputs, and for a S-eigenvalues matrix A(p)= 
AE+ffl(p) and S-modal  matrix q)(p) = F ( p )  q)z, 

a parameter matrix H(p) could be chosen by the 

following equation : 

A~F(p) ~ + ~(p)  V(p) • ~ 
(14) 

-- F (p) ~ e F  (p) = G (P) H (p) 

where ( ~ E = [ ~ f  ~b~: .-- ~b~], AE=diag(pf. p~, 
"", p~), f i - (P)=diag( tS , (P) ,  tSz(P). " ' ,  tS.(P)) 
and H(p)=[hl(P) hz(P) "'" h . ( p ) ] .  

Proof. If a state feedback u(t) = - K ( p ) x ( t )  is 

applied to.¢ (t)  = F  (p) x (t)  + G (p) u ( t ) ,  the clos- 

ed- loop  system becomes ~ '( t)  : ( F ( p )  - G (P) 

K(p))x(t). The corresponding right S-eigen- 

value problem is then defined by : 

(F(p) -G(p)K(p)  ) o~(P) =toi(P) el(P) (15) 

where ~bi(p) is the right S-eigenvector corre- 

sponding to the S-eigenvalue p~(p). The para- 
meter vector h~(p) ~ C  n is defined by : 

h,(P) = K ( p )  ¢i(P) (16) 

Then, Eq. (15) is put in the form of the Sylvester 

equation : 

o r  : 

(F(p) -p~(p)I) qS~(p) = G ( p ) h ~ ( p )  (17) 

(F(P)-(pf+~,(p) l ) )r i (p)qSf  (18) 
=G(p)  h,(~) 

The matrix form of Eq. (18) can be shown as Eq. 

(14). 

Using Theorem 4, we can solve for K(p) from 

the linear equation : 

K (p) l"(p) O e = H ( p )  (19) 

where the inverse matrix of  f ( p ) ~ E ( = ~ ( p ) )  

is always existed, K(p) consists of probabilist ic 
elements due to variations o f / ' ( p )  ~e.  

5. S i m u l a t i o n  a n d  R e s u l t s  

An example of the application is based on the 

longitudinal dynamics of an open- loop  unstable 

aircraft (Stengel and Ray, 1991). The Forward-  

Swept-Wing Demonstrator 's aerodynamic center 

is forward of its center of  gravity, resulting in 

static instability. Possible uncertainties in aero- 

dynamic and thrust effect as well as separate 

dynamic pressure (p and V) effects lead to a 12- 

element parameter vector. 

P-= [P VA1 fla faa f =  fa2 faa gn g12 gax gaa] 

Velocity (V)  and air-density (p) are modeled as 

uniform parameter, the remaining terms are kine- 

matics, due to gravity, identically zero or other- 

wise negligible. Each parameter perturbations 

are distributed around the nominal value and 

correlation is assumed to independent on each 

other. In terms of the element p, F(p) and G(P) 
are 

F(p) = 

- 2 g A ~  o V~Az 
2 

--45 p Vfa2 
V ~ 2 

o V~f32 
0 2 

0 o 

# VA3 - g  

1 0 

pf~ o 

1 o 

2] 
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The state components represent forward velocity, 

angle of  attack, pitch rate, and pitch angle. The 
principal control surfaces are the canard control 

surface and the thrust setting. The mean model 

and its eigenvalues for the given system are as 

follows : 

i00  03 04 l FE = --0.001 --1.2 1 
0 18. --0.6 ' 

0 0 1 

I-0.04 35.] 
G E = I  ~ 0 

--0.2 

of_4 = [ -5 .1535  -0 .0102±0.057{ 3.3539] 

For  illustration, P and Vare  10% standard devi- 

ation Gaussian uncertainties, and the remaining 

elements of p are subject to independent 30% 

standard deviation Gaussian uncertainties. The 

open- loop  eigenvalues distribution of the flight 

control application on two-dimensional  complex 

plane is shown in Fig. 5. 

Let the desired eigenvalues of  the c losed- loop 

system so that the natural frequency of the re- 

maining eigenvalue can be three or five times as 

large as the one of  a dominant  eigenvalue as 

follows : 

1._G . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . .  • + .  . . . . . . . . . . . . . . . . . . . . .  

i ! : i 

, . . . . . . . . . . . . . . . .  i . . . . . .  i . . . . . . .  i 

! 

i i i : 

I ] 5  - : . . . . . . . . .  ; . . . . . . . . .  i . . .  : . . . . .  

. . . . . .  ~ . . . . .  ' "  i 

i : : : 

+ • : + i + 

+ + i i i i 

-8 -B - 4  -2 O 2 4 B 
reel 

Open-loop eigenvalues distribution for the 
flight control application on two-dimension- 
al complex plane 

c 

E 

- O . S  

- 1  S 
-1  

F i g .  5 

(pf)  d =  --5.1535, 0"~;=0.6492 

(p~:) d=__4, 0"g~=0.3525 

(p~) n =  --0.5 + i, 5"].~=diag (0.0102, 0.0099) 

(p~) d=__0.5__ i, ~4~=diag(0.0102, 0.0099) 

where (pes)d and (p~)d are the eigenvalues on 

the damping ratio (~=0.447) and natural fre- 

quency (wn=l .12)  of the longitudinal short-  

period mode. The mean of desired modal matrix 

is selected to correspond with the desired eigen- 

values as follows: 

li °° :1 
(~E) d =  I 0 

0 I - i  1 + i  

0 1 + i  1 - - i /  

The mean and covariance of the absolute mis- 

alignment angle using Eq. (10) are as follows. 

0ta(p) -- (0, 0) rad 

02a(p) ~ (0, 0) rad 

03a(p) ~ (0.0728, 0.0045) rad 

04 a(p) ~ (0.0728, 0.0045) rad 

According to the design procedure of the pro- 

posed algorithm, feedback gain matrix which 

consists of probabilistic elements can be obtained 

through the time interval [0, 5000]. The variation 

of the Frobenius norm K r - -  I ki~ 
= . =  

of feedback gain matrix is shown in Fig. 6. The 

mean of feedback gain matrix can be obtained as 

follows : 

I-0.4158 200.4464 28.3421 --  121.4804] E e  / / 
[0.0708 20.9026 -2.4931 -39.0587 J 

The mean and covariance of the c losed- loop 

eigenvalues can be obtained as follows : 

(p~) a = _ 5.1525. ag1=0.6444 

(pzE) a=--4 .0005,  a#2:0.3474 

(p~:) a =  --0.4982-- 0.9992 i, 

~ , g = d i a g  (0.0099, 0.0101) 

(p[)  a =  --0.4982 + 0.9992 i, 

3-~.a : diag (0.0099, 0.0101) 
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Fig. 6 The variation of feedback gain matrix 

--4.4246 ] 
-c . / --3.7935 / 

A~oo =dlag[--0.5460--0.9912 z ] '  

L-O.5460+0.9912iJ 

[0.8263 0.7059 , , ] 
c ! 0.1475 0.2198 -0.0003-0.0011i -0.0003+0.0011i 

~t~=[-0.5302 -0.6511 -0.0011 +0.0000i -0.0011-0.0000i[ 
[ 0.1198 0.1716 0.0004-0.0008i 0.0004+0.0t)08/ ] 

• At time t = 1000, 

--2.7339 --839.7266 140.9579 1828.6845- 
-0.0001 -- 1.3648 1 0 

Af0oo = 
--0.0367 --13.8064 --5.1817 16.5238 

0 0 1 0 

The probability of stability of the closed-loop 
system is S = I .  The mean matrix of the achi- 
evable modal matrix can be achieved in least 
square sense as follows: 

0.541 0.8349 1 1 
(~• r)a l/0.0608 0.1533 -0.0004-0.0000i -0.0004+0.0000 

=]-0.2249 -0.4141 -0.0017-0.0000i -0.0017+0.0000 
/ 

[ 0.0476 0.1039 0.0013-0.0000i 0.0013+0.0000i 

The mean and covariance of the absolute misa- 
lignment angle for closed-loop S-eigenvectors are 
as follows : 

o~a(p) ~ (--1.0684e--012, 7.5822e--021) rad 

~a(p )  ~ ( _  1.4593e--010, 1.8232e--015) rad 

~a(p )  ~ (__ 1.2212e--006, 1.5576e--008) rad 

Off(p) ~ (1.2212e--006, 1.5576e--008) rad 

--4.2068 ] 
"c . 1 --4.0024 / 

Zx°°° =dlag[- -0 .5357 + 1.1953i] ' 
L-0 .5357-1 .1953 i j  

I07422 0.8733 , ] 
~c _[ 0.2171 0.1682 -0.0005+0.0015i -0.0005-0.0015i 

1~-/-0.6168 -0.4437 -0.0022+0.0007i -0.0022-0.0007i / 
[ 0.1466 0.1108 0.0011+0.0013i 0.0011-0.0013i J 

• At time ¢=5000, 

I--8.2426 --2422.354 290.6554 492?305]  
-c /--O.O001 --1.3853 1 

A5°°°=[-0.02131-73.26560 -1.5191124.~201 ] '  

F -60427 ] 
c . / --3.9185 1 

A.~ooo = dlag ]--0.5929--0.8439 i1 '  

L--0.5929+0.8439iJ 

These result show the perturbation of S-eigen- 
vectors rarely to raise around the mean of ac- 
hievable eigenvector. The closed-loop system, S- 
eigenvalues, and S-eigenvector are the following 
at each time t=100,  1000, 5000, respectively. 

• At time t----100, 

A ~ =  

---4.7083 --4369.7696 343.0898 6900.137- 
--0.0001 --8.8302 l 0 
--0.0583 --60.4136 --3.7714 77.6744 

0 0 1 0 

0.8331 0.874 1 1 
c =//0.1146 0.1736 -0.0005-0.0014i -0.0005+0.00141 

]-0.5338 -0.4397 -0.0015-0.0007i -0.0015 +0.0007i 
[ 

L 0.0883 0.1122 0.0014-0.0008i 0.0014+0.0008i 

where, the upper script ' c '  denotes the closed- 
loop system, the eigenvalue-eigenvector problem 
is satisfied with the eigenvalues and eigenvectors 
at each time, respectively. The closed-loop eigen- 
values distribution and its PDF for the flight 
control application on two-dimensional complex 
plane and three-dimensional probability density 
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Closed-loop eigenvalues distribution for the 
flight control application on two-dimension- 
al complex plone 
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Fig. 8 Closed-loop eigenvalues distribution for the 
flight control application on three-dimen- 
sional probability density complex plone 

complex plane are shown in Fig. 7 and 8. All of  
eigenvalues are located on the left-half plane, and 
each eigenvalue varies with its mean value. 

Figure 9 shows the closed-loop eigenvalues 
distribution on two-dimensional complex plane 
via general eigenstructure assignment as compar- 
ed with the result of S-eigenstructure assignment 
scheme. In this case, the probability of stability 
of the closed-loop system is S----0.9065. The feed- 
back gain matrix, closed-loop eigenvalues and 
its corresponding eigenvectors are as follows, re- 
spectively. 

I-0.5419 286.2739 20.8633 --269.1261] 
/ ' (=[0.1003 ~ 29.895 --3.3662 --56.8933 J 9 

-L 
-10 -8 - 6  - 4  -2 0 2 

real 

Fig. 9 Closed-loop eigenvalues distribution via 
general eigenstructure assignment 

f 0.7675 
~)a__/0.1545 

-0.6107 
[ 0.1185 

--5.1535] Á:4,Á 
L - 0 . 5 + i J  

0.8712 1 1 
0.1607 -0.0006-0.0018i -0.0006+0.0018i 

-0.4499 -0.0021-0.0006i -0.0021 +0.~06i 
0.1125 0.0014-0.0014i 0.0014+0.0014i 

6. Conclusions 

In this paper, first, the S-eigenvalue concept 
and its corresponding S-eigenvector pair for 
linear continuous-time systems with probabilis- 
tic uncertainty was proposed. The proposed con- 
cept is concerned with the perturbation of eigen- 
values due to the probabilistic variable para- 
meters in the dynamic model of  a plant. Also, S- 
stability was presented on the appropriate ran- 
dom characteristics of  perturbations to maintain 
the proper stability behavior of the overall system. 
Finally, S-eigenstructure assignment scheme via 
a Sylvester equation approach based on the S- 
eigenvalue concept was proposed. The proposed 
design schemes were applied to the longitudinal 
dynamics of  open-loop-unstable aircraft with 
possible uncertainties in aerodynamic and thrust 
effects as well as separate dynamic pressure. These 
results explicitly characterized how S-eigenvalues 
in the complex plane may impose stability on the 
system. 
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